[1]李化,陳麒任,李浩原,等.交流高壓金屬化膜電容器溫升特性和優化設計[J].高壓電器,2018,54(01):1-8.[doi:10.13296/j.1001-1609.hva.2018.01.001]
 LI Hua,CHEN Qiren,LI Haoyuan,et al.Temperature Rise Characteristic and Design Optimization of AC High Voltage Metallized Film Capacitor[J].High Voltage Apparatus,2018,54(01):1-8.[doi:10.13296/j.1001-1609.hva.2018.01.001]
點擊複制

交流高壓金屬化膜電容器溫升特性和優化設計()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第54卷
期數:
2018年01期
頁碼:
1-8
欄目:
研究與分析
出版日期:
2018-01-01

文章信息/Info

Title:
Temperature Rise Characteristic and Design Optimization of AC High Voltage Metallized Film Capacitor
作者:
李化1陳麒任1李浩原1姜浩宇1李立威1李露1嚴飛2
1. 華中科技大學強電磁工程與新技術國家重點實驗室, 武漢 430074; 2. 中國電力科學研究院武漢高壓研究所, 武漢 430074
Author(s):
LI Hua1CHEN Qiren1LI Haoyuan1JIANG Haoyu1LI Liwei1LI Lu1YAN Fei2
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Electric Power Research Institute of China, Wuhan High Voltage Research Institute, Wuhan 430074, China
關鍵詞:
金屬化膜電容器 溫升 優化設計
Keywords:
metallized film capacitor temperature rise design optimization
DOI:
10.13296/j.1001-1609.hva.2018.01.001
文獻標志碼:
A
摘要:
金屬化膜電容器具有自愈特性,可用于較高的工作場強,具有較高的工作穩定性和儲能密度。目前,金屬化膜電容器在低壓交直流濾波、脈沖放電領域已得到較爲廣泛的應用。而高壓交流濾波領域目前還應用較少。文中的研究對象爲應用于交流無功補償場合的金屬化膜電容器。由于溫度過高會影響電容器運行穩定性和使用壽命,因此有必要對其運行時的溫升特性進行研究,並基于降低電容器內部溫升對其進行優化設計。分析了電容器內部的熱傳導過程,計算了電容器內部發熱和表面散熱,建立有限元仿真模型,對其在通過交流電流的情況下的內部溫升進行了計算,並通過實驗驗證了計算模型的正確性。在此基礎上,對電容器的結構和參數進行了優化設計。研究結果表明:在合適的範圍內采用較厚的金屬化膜,較小的膜寬和元件噴金端對外殼大面擺放有利于降低電容器內部溫升。
Abstract:
Metallized film capacitors (MFC) own characteristics of self?healing and can be used in high electric field strength applications. Also, MFC has high working reliability and high power density. Currently, MFC has been widely used in low voltage AC/DC filtering and pulse discharge applications. However, the application in high voltage AC filtering is rarely reported. The metallized film capacitor investigated in this paper is used for reactive power compensation. High temperature has an adverse effect on the working stability and lifetime of metallized film capacitor, so it is necessary to investigate the temperature rise characteristic and optimization measures. This paper analyzed the heat transfer process inside the capacitor and calculated the heat power and heat dissipation of the capacitor. A simulation model is built with reasonable simplification, and the temperature rise of the capacitor when AC current flow through is calculated. The simulation result is verified by test result. On the basis, the structure and parameters are chosen by optimized design. The investigation indicate that in a proper selection range, MFC designed based on thicker film, smaller film width and element scooping facing the main face of the shell will reduce the temperature rise in MFC.

參考文獻/References:

[1] 袁 靜. 有機介質交流電容器失效模式及原因分析[J]. 電力電容器, 2005,26(2):14-18.
YUAN Jing. Fault mode and cause analysis of the organic dielectric AC motor capacitor[J]. Power Capacitor,2005, 26(2):14-18.
[2] RABUFFI M, PICCI G. Status quo and future prospects for metallized polypropylene energy storage capacitors[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1939-1942.
[3] 李 化, 章 妙, 林福昌, 等. 金屬化膜電容器自愈理論及規律研究[J]. 電工技術學報, 2012, 27(9): 218-223.
LI Hua, ZHANG Miao, LIN Fuchang, et al. Study on theory and influence factors of self-healing in metallized film capacitors[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 218-223.
[4] LEE S H, LEE B Y, KIM H K, et al. Local heat source approximation technique for predicting temperature rise in power capacitors[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1250-1253.
[5] 劉文澤. 高壓電力電容器內部最熱點溫度的計算模型[J]. 電力自動化設備, 2009, 29(7): 82-84.
LIU Wenze. The calculation model of hotspot temperature in high voltage power capacitors[J]. Electric Power Automation Equipment, 2009, 29(7): 82-84.
[6] 馮申榮, 吳浩波. SF6和植物油浸自愈式低電壓並聯電容器[J]. 電力電容器, 1992, 13(4): 27-36.
FENG Shenrong, WU Haobo. Self-healing low voltage parallel capacitors impregnated with SF6 and vegetable oil[J]. Power Capacitor, 1992, 13(4): 27-36.
[7] 周存和. 高壓金屬化膜並聯電容器[J]. 電力電容器, 2002,23(2):1-5.
ZHOU Cunhe. High voltage metallized film shunt capacitor[J]. Power Capacitor, 2002,23(2):1-5.
[8] QIN S, HO J, RABUFFI M, et al. Implications of the anisotropic thermal conductivity of capacitor windings[J]. IEEE Electrical Insulation Magazine, 2011, 27(1): 7-13.
[9] PéLISSOU S,ST-ONGE H,WERTHEIMER M R. Dielectric breakdown in polyethylene at elevated temperatures[J]. IEEE Transactions on Electrical Insulation, 1984(3): 241-244.
[10] SCHNEUWLY A, GR-NING P, SCHLAPBACH L, et al. Temperature-dependent dielectric breakdown strength of oil impregnated polypropylene foils[J]. Materials Science and Engineering:B, 1998, 54(3): 182-188.
[11] 李積捷, 鄭曉婷. 變電站10 kV並聯電容器發熱故障分析及防範措施[J]. 電力學報, 2012,27(5): 481-483.
LI Jijie,ZHENG Xiaoting. The analysis and precautionary measure of overheat of 10 kV parallel capacitor used in substations[J]. Journal of Electric Power,2012,27(5): 481-483.
[12] SARJEANT W J,ZIRNHELD J,MACDOUGALL F W. Capacitors[J]. IEEE Transaitions on Plasma Science,1998,26(5):1368-1392.
[13] 馬乃兵. 幹式高壓並聯電容器的技術特點分析[J]. 電力電容器, 2002, 23(2):7-10.
MA Naibing. Analysis of the technical characteristics for the dry-type high-voltage shunt capacitor[J]. Power Capacitor, 2002, 23(2):7-10.
[14] 黃 玲, 黃有祥. 溫度對集合式全膜並聯電容器使用壽命影響的研究[J]. 電力電容器, 2006, 27(2): 35-45.
HUANG Ling, HUANG Youxiang. Research for influence of temperature on the operation life of assembled all-film shunt capacitor[J]. Power Capacitor, 2006, 27(2): 35-45.
[15] SARJEANT W J, ZIRNHELD J, MACDOUGALL F W. Capacitors[J]. IEEE Transactionson Plasma Science, 1998, 26(5): 1368-1392.
[16] REED C W, CICHANOWSKI S W. The fundamentals of aging in HV polymer-film capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 904-922.
[17] 陳溫良. 金屬化電力電容器的熱計算問題[J]. 電力電容器, 2003(s):53-57.
CHEN Wenliang. Therlnal calculation of metallized power capacitor[J]. Power Capacitor, 2003(s): 53-57.
[18] 趙鎮南. 傳熱學[M]. 第2版. 北京:高等教育出版社, 2008:254-264.
ZHAO Zhengnan. Heat transfer theory[M]. 2nd ed. Beijing:Advanced Education Press, 2008:254-264.
[19] 邬天華, 王曉墨, 許國良,等. 工程傳熱學[M]. 武漢: 華中科技大學出版社, 2005.
WU Tianhua, WANG Xiaomo, XU Guoliang, et al. Engineering heat transfer[M]. Wuhan:Huazhong University of Science and Technology Press, 2005.
[20] EL-HUSSEINI M H, VENET P, ROJAT G, et al. Thermal simulation for geometric optimization of metallized polypropylene film capacitors[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 713-718.

備注/Memo

備注/Memo:
收稿日期:2017-07-15; 修回日期:2017-09-25 基金項目:國家電網科技項目(GY71-17-010)。 Project Supported by Program of Science and Technology of SGCC(GY71-17-010). 李 化(1979—),女,副教授,研究方向爲脈沖功率技術、高儲能密度介質技術、過電壓與絕緣配合。
更新日期/Last Update: 2018-01-30