• <kbd id="xtlrxv"></kbd><sup id="xtlrxv"></sup>

            [1]王 輝,李曉軍,李 舟.SF6電氣設備絕緣故障診斷用SO2、H2S氣體傳感器研究進展[J].高壓電器,2019,55(08):1-9.[doi:10.13296/j.1001-1609.hva.2019.08.001]
             WANG Hui,LI Xiaojun,LI Zhou.Research Progress of SO2 and H2S Gas Sensors for Insulation Fault Detection of SF6 Electrical Equipment[J].High Voltage Apparatus,2019,55(08):1-9.[doi:10.13296/j.1001-1609.hva.2019.08.001]
            點擊複制

            SF6電氣設備絕緣故障診斷用SO2、H2S氣體傳感器研究進展()
            分享到:

            《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

            卷:
            第55卷
            期數:
            2019年08期
            頁碼:
            1-9
            欄目:
            研究與分析
            出版日期:
            2019-08-15

            文章信息/Info

            Title:
            Research Progress of SO2 and H2S Gas Sensors for Insulation Fault Detection of SF6 Electrical Equipment
            作者:
            王 輝1 李曉軍2 李 舟1
            (1. 國網陝西省電力公司西安供電公司, 西安 710032; 2. 國網陝西省電力公司檢修公司, 西安 710065)
            Author(s):
            WANG Hui1 LI Xiaojun2 LI Zhou1
            (1. State Gride Xi’an Power Supply Company, Xi’an 710032, China; 2. State Gride Shaanxi Maintenance Company, Xi’an 710065, China)
            關鍵詞:
            SF6分解物 二氧化硫 硫化氫 氣體傳感器 研究進展
            Keywords:
            SF6 decomposition components SO2 H2S gas sesnors research progress
            DOI:
            10.13296/j.1001-1609.hva.2019.08.001
            摘要:
            在SF6電氣設備中,不同類型絕緣故障會導致SF6産生不同的分解産物,這些産物在體積分數、生成速率等方面有明顯差異。這其中,SO2和H2S作爲故障類型的典型氣體標志物,通過對其體積分數及體積分數變化進行檢測和監測便能夠判斷出絕緣故障的類型與嚴重程度。文中主要對高靈敏SO2和H2S氣體傳感器的最新研究進展進行了綜述分析,包括材料選擇、工作溫度優化及選擇靈敏度提高等關鍵因素;並對目前研究存在的問題進行了評論分析。最後,文章指出了SF6電氣設備絕緣故障檢測用SO2和H2S氣體傳感器需要解決的問題和未來研究發展的方向。
            Abstract:
            There are very significant differences in the gas content and formation rate of SF6 decomposition components for different insulation faults in SF6 electrical equipment. Among all the SF6 decomposition products, SO2 and H2S are considered as the typical gases for monitoring insulation faults. The type and severity of insulation faults can be determined by detecting and the concentration and its changes of SO2 and H2S gases. In this paper, the latest research progress of SO2 and H2S gas sensors is reviewed and discussed,including material selection, work temperature optimization, selection sensitivity etc. The existing problems and future research directions of SO2 and H2S gas sensors for insulation fault detection of SF6 electrical equipment are also pointed out in the end.

            參考文獻/References:

            [1] 潘 臻,溫定筠,彭 鵬,等. SF6氣體分解産物檢測技術在開關類設備狀態診斷中的應 用[J]. 高壓電器,2016,52(7):196?201. PAN Zhen,WEN Dingjun,PENG Peng,et al. Application of SF6 gas decomposition products detection technology to switchgear state diagnosis[J]. High Voltage Apparatus,2016,52(7):196?201.
            [2] 季嚴松,王承玉,楊 韌,等. SF6氣體分解産物檢測技術及其在GIS設備故障診斷 中的應用[J]. 高壓電器,2011,47(2):100?103. JI Yansong,WANG Chengyu,YANG Ren,et al. Measuring technique of SF6 decomposition products and its application to fault diagnosis of GIS[J]. High Voltage Apparatus,2011,47(2):100?103.
            [3] 遊榮文,黃逸松. 基于SO2、H2S體積分數測試的SF6電氣設備內部故障的判斷[J]. 福建電力與電工,2004,24(2):15?16. YOU Rongwen,HUANG Yisong. Estimating faults inside SF6 electric equipment basis on measure and test of quantity of SO2、H2S[J]. Fujian Power and Electrical Engineering,2004,24(2):15?16.
            [4] 蔡 萱,余建飛,肖 雅. SF6氣體分解産物檢測在電氣設備故障診斷中的應用[J]. 湖北電力,2013,37(1):36?38. CAI Xuan,YU Jianfei,XIAO Ya. Application of decomposition products detection of SF6 in fault diagnosis of electrical equipment [J]. Hubei Electric Power,2013,37(1):36?38.
            [5] 史會軒,錢 進,熊志東,等. SF6電氣設備分解産物在線監測方法研究[J]. 高壓 電器,2014,50(1):56?60. SHI Huixuan,QIAN Jin,XIONG Zhidong,et al. Investigation on on?line monitoring of SF6 decomposition in electrical device[J]. High Voltage Apparatus,2014,50(1):56?60.
            [6] 顔湘蓮,王承玉,宋 杲,等. 氣體絕緣開關設備中SF6氣體分解産物檢測與設備故 障診斷的研究進展[J]. 高壓電器,2013,49(6):1?9. YAN Xianglian,WANG Chengyu,SONG Gao,et al. Recent progress in detection of SF6 decomposition products and fault diagnosis for gas insulated switchgears[J]. High Voltage Apparatus,2013,49(6): 1?9.
            [7] SUN Y F,LIU S B,MENG F L,et al. Metal oxide nanostructures and their gas sensing properties:A review[J]. Sens,2012,12(3):2610?2631.
            [8] STANKOVA M,VILANOVA X,CALDERER J,et al. Detection of SO2 and H2S in CO2 stream by means of WO3?based micro?hotplate sensors[J]. Sensors and Actuators B,2004,102(2):219?225.
            [9] YULIARTO B,RAMADHANI M F,SEPTIANI N W,et al. Enhancement of SO2 gas sensing performance using ZnO nanorod thin films:The role of deposition time[J]. Materials Science,2016,52(8):4543?4554.
            [10] ZHANG Xiaoxing,ZHANG Jinbin,JIA Yichao,et al. TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2[J]. Sensors,2012,12(3): 3302?3313.
            [11] DAS S,CHAKRABORTY S,PARKASH O,et al. Vanadium doped tin dioxide as a novel sulfur dioxide sensor[J]. Talanta,2008,75(2):385?389.
            [12] TYAGI P,SHARMA A,TOMAR M,et al. Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor[J]. Sensors and Actuators B,2016(224):282?289.
            [13] TYAGI P,SHARMA A,TOMAR M,et al. SnO2 thin film sensor having NiO catalyst for detection of SO2 gas with improved response characteristics[J]. Sensors and Actuators B,2017(248):998?1005.
            [14] LEE S C,HWANG B W,LEE S J,et al. A novel tin oxide?based recoverable thick film SO2 gas sensor promoted with magnesium and vanadium oxides[J]. Sensors and Actuators B,2011,160(1):1328?1334.
            [15] DAS S,RANA S,MURSALIN S M,et al. Sonochemically prepared nanosized BiFeO3 as novel SO2 sensor[J]. Sensors and Actuators B,2015(218):122?127.
            [16] MARIKUTSA A,RUMYANTSEVA M,BARANCHIKOV A A. Nanocrystalline BaSnO3 as an alternative gas sensor material:Surface reactivity and high sensitivity to SO2 [J]. Materials,2015,8(9):6437?6454.
            [17] HIDALGO P,CASTRO R H,COELHO A C,et al. Surface segregation and consequent SO2 sensor response in SnO2?NiO[J]. Chemistry of Materials,2005,17 (16):4149?4153.
            [18] TYAGI P,SHARMA A,TOMAR M,et al. A comparative study of RGO?SnO2 and MWCNT?SnO2 nanocomposites based SO2 gas sensors[J]. Sensors and Actuators B,2017 (248):980?986.
            [19] CHAUDHARY V,KAUR A. Solitary surfactant assisted morphology dependent chemiresistive polyaniline sensors for room temperature monitoring of low parts per million sulfur dioxide[J]. Polymer International,2015,64(10):1475?1481.
            [20] CHAUDHARY V,KAUR A. Enhanced room temperature sulfur dioxide sensing behaviour of in situ polymerized polyaniline?tungsten oxide nanocomposite possessing honeycomb morphology[J]. RSC Adv. ,2015(5):73535?73544.
            [21] SHAYMURAT T,TANG Qingxin,TONG Yanhong,et al. Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub?ppm levels at room temperature[J]. Advanced Materials,2013,25(16):2269?2273.
            [22] ZHANG S M,ZHANG P P,WANG Y,et al. Facile fabrication of a well? ordered porous Cu?doped SnO2 thin film for H2S sensing[J]. ACS Applied Materials & Interfaces,2014,6(17):14975?14980.
            [23] ZHANG Zhenyu,ZOU Rujia,SONG Guosheng,et al. Highly aligned SnO2 nanorods on graphene sheets for gas sensors[J]. Journal of Materials Chemistry, 2011,21(43):17360?17365.
            [24] CHOI S J,JANG B H,LEE S J,et al. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces,2014,6(4):2588?2597.
            [25] VUONG N M,CHINH N D,HUY B T,et al. CuO?decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors [J]. Sci. Rep.,2016(6):26736.
            [26] PARK S,CAI Zhicheng,LEE J,et al. Fabrication of a low?concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles[J]. Materials Letters,2016(181):231?235.
            [27] YU Haoxiong,SONG Zhilong,LIU Qian,et al. Colloidal synthesis of tungsten oxide quantum dots for sensitive and selective H2S gas detection[J]. Sensors and Actuators B,2017(248):1029?1036.
            [28] LI Min,ZHOU Dongxiang,ZHAO Jun,et al. Resistive gas sensors based on colloidal quantum dot (CQD) solids for Hydrogen sulfide detection[J]. Sensors and Actuators B,2015(217):198?201.
            [29] BAI Shouli,CHEN Chao,LUO Ruixian,et al. Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J]. Sensors and Actuators B,2015(216):113?120.
            [30] SHI J,CHENG Z,GAO L,et al. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties[J]. Sensors Actuators B,2016(230):736?745.
            [31] LI Z,WANG N,LIN Z,et al. Room?temperature high?performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method[J]. ACS Applied Materials & Interfaces,2016,32(8):20962?20968.
            [32] CUI Guangliang,ZHANG Pinhua,CHEN Li,et al. Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature[J]. Scientific Reports,2017(7):43887.
            [33] ZHOU L,SHEN F,TIAN X,et al. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity[J]. Nanoscale,2013(5):1564?1569.
            [34] SONG Zhilong,WEI Z,WANG Baocun,et al. Sensitive room?temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites[J]. Chemistry of Materials,2016,28(4):1205?1212.
            [35] WU Hao,CHEN Zhimin,ZHANG Jialin,et al. Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II) for ppb?level H2S sensing at room temperature[J]. Journal of Materials Chemistry A,2016,4(3):1096?1104.

            備注/Memo

            備注/Memo:
            王 輝(1982—),女,工學博士,高工,主要研究方向爲電力設備故障診斷、絕緣與功能電介 質材料的應用基礎。收稿日期:2019-01-25; 修回日期:2019-03-17
            更新日期/Last Update: 2019-08-16