<code id="d5ghst"><button id="d5ghst"></button></code><q id="d5ghst"><dir id="d5ghst"></dir><tr id="d5ghst"></tr><option id="d5ghst"></option><dir id="d5ghst"></dir></q><q id="d5ghst"><div id="d5ghst"></div></q><th id="d5ghst"><q id="d5ghst"></q><dt id="d5ghst"></dt></th>

              [1]王 歡,項 瓊,馮 宇,等.一種特高壓用具有自校准功能的電流互感器[J].高壓電器,2019,55(08):230-236.[doi:10.13296/j.1001-1609.hva.2019.08.033]
               WANG Huan,XIANG Qiong,FENG Yu,et al.UHV Current Transformer with Self-calibration Function[J].High Voltage Apparatus,2019,55(08):230-236.[doi:10.13296/j.1001-1609.hva.2019.08.033]
              點擊複制

              一種特高壓用具有自校准功能的電流互感器()
              分享到:

              《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

              卷:
              第55卷
              期數:
              2019年08期
              頁碼:
              230-236
              欄目:
              技術討論
              出版日期:
              2019-08-15

              文章信息/Info

              Title:
              UHV Current Transformer with Self-calibration Function
              作者:
              王 歡12 項 瓊1 馮 宇1 尹志榮1 朱 凱1
              (1. 中國電力科學研究院, 武漢 430074; 2. 華中科技大學, 武漢 430074)
              Author(s):
              WANG Huan12 XIANG Qiong1 FENG Yu1 YIN Zhirong1 ZHU Kai1
              (1. China Electric Power Research Institute, Wuhan 430074, China; 2. Huazhong University of Science and Technology, Wuhan 430074, China)
              關鍵詞:
              特高壓 雙二次繞組 並聯運行 誤差自校准 有 限元分析
              Keywords:
              UHV double-secondary winding parallel operation error self-calibration finite element analysis
              DOI:
              10.13296/j.1001-1609.hva.2019.08.033
              摘要:
              特高壓用電流互感器(current transformer,CT)在安裝之後開展誤差交接試驗時需要通過GIS兩個出線套管,在外側接入標准CT和大功率升流器等設備,形成閉合大電流試驗回路,該方法不僅實施困難,且由于借助于接地開關因此對斷路器、隔離開關等設備要求按照大電流回路構成進行設計,對設備制造提出更高要求。爲解決這一問題,基于安培環路定理提出CT二次采用雙繞組設計,使得線圈電流形成1:1自校准方式,試驗時僅需在該CT其中一個二次繞組通入額定二次電流即可。爲驗證這一技術的可行性,首先,介紹該CT的設計原理及運行方式;然後,建立該CT的數學模型和仿真模型對自校准CT誤差開展矢量分析,通過對自校准CT與運行狀態時原理電路的區別的比對,分析兩種運行狀態下同一CT所呈現的誤差特性偏差來源;最後結合皖電東送工程用CT典型參數研制樣機一台,對樣機開展絕緣試驗和誤差試驗,數據顯示所研制的CT絕緣滿足特高壓工程要求,在運與自校准誤差均在0.2S級誤差限值以內,且兩種狀態下誤差隨額定電流變化趨勢一致,偏差在0.1級誤差限值以內。理論分析及實測值均證明自校准數據可以反映在運時誤差情況,該設計方法爲簡化特高壓用CT現場誤差交接試驗提供技術支撐。
              Abstract:
              To carry out the error commissioning test after installation of a UHV current transformer (CT), standard CT,high-current generator and other equipment are required to connect from the outside through two outlet-bushings of the GIS to form a closed high capacity current test circuit. However, this method is difficult to be implemented,and needs to design the circuit breaker,disconnecting switch and other equipment in accordance with the composition of high capacity current circuit because of the adoption of the grounding switch,which means higher requirements for equipment manufacturing. To solve this problem,a double-winding design of CT secondary side is proposed based on the Ampere circuital theorem to form 1∶1 self-calibration mode of the coil current, then in test only one of the CT secondary windings is applied with the rated secondary current. To verify the feasibility of this technology,the design principle and operation mode of the CT are introduced,a mathematical model and a simulation model of the CT are established to carry out vector analysis of the self-calibration CT error,and the error characteristics of the same CT in two operation states are analyzed through comparison between the differences of the self-calibration CT and the schematic circuit. Moreover,based on the typical parameters of the CT in the Anhui-to-East UHV Transmission Line Project,a CT prototype is developed to carried out insulation test and error test. Test data show that the insulation of the developed CT meets the requirement of the UHV project,both operation error and self-calibration error are within the limit of 0.2S level,and the variation of the errors with the rated current is consistent,the deviation is within the error limit of 0.1 level. Theoretical analysis and measurement show that the self-calibration data can reflect the error situation in the case of operation. This design method may provide a technical support for simplifying the on-site error commissioning test for UHV CT.

              參考文獻/References:

              [1] 孫玉嬌,周勤勇,申 洪. 未來中國輸電網發展模式的分析與展望[J]. 電網技術,2013,37(7):1929-1935. SUN Yujiao,ZHOU Qinyong,SHEN Hong. Analysis and prospect on development patterns of China’s power transmission network in future[J]. Power System Technology,2013,37(7):1929-1935.
              [2] 杜至剛. 中國特高壓電網發展戰略規劃研究[D]. 濟南:山東大學,2008. DU Zhigang. Study on strategic planning of ultra-high voltage grid development in China[D]. Jinan:Shandong University,2008.
              [3] 呂志強,田 勇,路夏甲,等. 現場電流互感器誤差測試間接檢定法的研究[J]. 工業儀表與自動化裝置,2014(6):79-81. LYU Zhiqiang,TIAN Yong,LU Xiajia,et al. The research of the indirect calibration methods on the site current transformers error test[J]. Industrial Instrumentation & Automation,2014(6):79-81.
              [4] 張 皓,趙 偉,屈凱峰,等. 非均繞等安匝法試驗下電流互感器鐵心磁場的研究[J]. 電工電能新技術,2008,27(1):47-50. ZHANG Hao,ZHAO Wei,QU Kaifeng,et al. Research on magnetic field of current transformer under non uniformly-distributed equal ampere-turns test[J]. Advanced Technology of Electrical Engineering and Energy,2008,27(1):47-50.
              [5] 鄭漢軍,吳良科,雷 民,等. 並聯式等安匝法在GTA現場誤差校驗中應用[J]. 電測與儀表,2010,47(12):31-35. ZHENG Hanjun,WU Liangke,LEI Min,et al. Application of parallel and equal ampere turns method on field error calibration GTA[J]. Electrical Measurement & Instrumentation,2010,47(12):31-35.
              [6] 徐敏銳,黃奇峰,盧樹峰,等. 1 000 kV特高壓GIS電流互感器現場誤差智能化檢定系統設計與應用[J]. 電測與儀表,2015,52(22):68-72. XU Minrui,HUANG Qifeng,LU Shufeng,et al. Design and application of intelligent on-site error verification system for 1 000 kV UHV current transformer in GIS[J]. Electrical Measurement & Instrumentation,2015,52(22):68-72.
              [7] 孫 沖,耿建坡,崔海利,等. 電流互感器誤差測試大電流回路特性及改善方法研究[J]. 電測與儀表,2012,49(9):58-62. SUN Chong,GENG Jianpo,CUI Haili,et al. Research of current loop impedance and improving method of on-site calibration for current transformers[J]. Electrical Measurement & Instrumentation,2012,49(9):58-62.
              [8] 趙修民,趙屹濤. 低壓外推法測定電流互感器誤差[J]. 電測與儀表,2004,41(12):28-30. ZHAO Xiumin,ZHAO Yitao. Error test of current transformers with low-voltage deduced method[J]. Electrical Measurement & Instrumentation,2004,41(12):28-30.
              [9] 費 烨,王曉琪,章述漢,等. 1 000 kV GIS中TA誤差試驗分析[J]. 高電壓技術,2009,35(5):987-993. FEI Ye,WANG Xiaoqi,ZHANG Shuhan,et al. Test and analysis of error calibration of 1 000 kV GIS current transformer[J]. High Voltage Engineering,2009,35(5):987-993.
              [10] SMEDLY K M,ZHOU Luowei,QIAO Chongming. Unified constant-frequency integration control of active power filters-steady-state and dynamics[J]. IEEE Trans. on Power Electronic,2001,16(3):428-436.
              [11] SMEDLY K M,CUK S. One-cycle control of switching converters[J]. IEEE Trans. on Power Electronic,1995,10(6):625-633.
              [12] KANERVA S,SEMAN S,ARKKIO A. Inductance model for coupling finite element analysis with circuit simulation[J]. IEEE Transactions on Magnetics,2005,41(5):1620-1623.
              [13] 林 勇,倪有源. 電流互感器三維磁場分析與互感計算[J]. 電力自動化設備,2011,31(1):27-30. LIN Yong,NI Youyuan. 3-D magnetic field analysis and mutual inductance computation of current transducer[J]. Electric Power Automation Equipment,2011,31(1):27-30.
              [14] 屈凱峰,趙 偉,江 波,等. 帶平衡繞組大膽劉互感器磁場的三維有限元仿真研究[J]. 高壓電器,2009,45(1):25-32. QU Kaifeng,ZHAO Wei,JIANG Bo,et al. 3D FEM computation of magnetic field of heavy current transformer with shielding coils[J]. High Voltage Apparatus,2009,45(1):25-32.
              [15] 許加柱,羅隆福,李 季,等. 大電流互感器試驗時的電磁耦合場分析[J]. 高壓電器,2004,40(6):446-448. XU Jiazhu,LUO Longfu,LI Ji,et al. Analysis of electromagnetic coupling field of large current transformer under testing condition[J]. High Voltage Apparatus,2004,40(6):446-448.
              [16] 許加柱,羅隆福,李 季. 基于場路耦合法的大電流互感器屏蔽繞組分析[J]. 中國電機工程學報,2006,26(23):167-172. XU Jiazhu,LUO Longfu,LI Ji. Shielding windings analysis of large current transformers based on coupled field-circuit method[J]. Proceeding of the CSEE,2006,26(23):167-172.
              [17] 姚 騰. 雜散電場對超大電流互感器性能影響的研究[D]. 成都:電子科技大學,2016. YAO Teng. Research on effect of stray magnetic field to performance of heavy current transformer[D]. Chengdu:University of Electronic Science and Technology of China,2016.
              [18] 肇 巍. 大電流互感器電場數值分析與屏蔽設計[D]. 沈陽: 沈陽工業大學,2008. ZHAO Wei. Numerical analysis and shield design of electromagnetic field for large current transformer[D]. Shenyang:Shenyang University of Technology,2008.
              [19] 耿小亮,範春虎,艾紹貴,等. SF6電流互感器結構強度有限元分析[J]. 高壓電器,2007,43(4):250-252. GENG Xiaoliang,FAN Chunhu,AI Shaogui,et al. Finite element analysis of SF6 current transformer’s structure strength[J]. High Voltage Apparatus,2007,43(4):250-252.

              備注/Memo

              備注/Memo:
              王 歡(1984—),女,博士研究生,高級工程師,主要從事互感器運維及測量技術研究。 項 瓊(1974—),女,碩士,教授級高級工程師,主要從事一次設備運維方面的技術研究。 馮 宇(1978—),男,博士,高級工程師,主要從事電能質量分析與控制、互感器技術方面的研究工作。 尹志榮(1993—),男,碩士研究生,研究方向爲互感器技術、電氣設備狀態監測與故障診斷。 朱 凱(1983—),男,碩士,工程師,主要從事互感器檢測技術研究。收稿日期:2019-01-27; 修回日期:2019-03-09 基金項目:國網公司項目(SGSXDKY-PJKJ2015-003)。 Project Supported by Project of State Grid of China(SGSXDKY-PJKJ2015-003).
              更新日期/Last Update: 2019-08-16